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Abstract—Edge computing enables Mobile Autonomous Sys-
tems (MASs) to execute continuous streams of heavy-duty
mission-critical processing tasks, such as real-time obstacle detec-
tion and navigation. However, in practical applications, erratic
patterns in channel quality, network load, and edge server load
can interrupt the task flow’s execution, which necessarily leads to
severe disruption of the system’s key operations. Existing work
has mostly tackled the problem with reactive approaches, which
cannot guarantee task-level reliability. Conversely, in this paper
we focus on learning-based predictive edge computing to achieve
self-resilient task offloading. By conducting a preliminary exper-
imental evaluation, we show that there is no dominant feature
that can predict the edge-MAS system reliability, which calls
for an ensemble and selection of weaker features. To tackle the
complexity of the problem, we propose SeReMAS, a data-driven
optimization framework. We first mathematically formulate a
Redundant Task Offloading Problem (RTOP), where a MAS may
connect to multiple edge servers for redundancy, and needs to
select which server(s) to transmit its computing tasks in order
to maximize the probability of task execution while minimizing
channel and edge resource utilization. We then create a predictor
based on Deep Reinforcement Learning (DRL), which produces
the optimum task assignment based on application-, network- and
telemetry-based features. We prototype SeReMAS on a testbed
composed by a Tarot650 quadcopter drone, mounting a PixHawk
flight controller, a Jetson Nano board, and three 802.11n WiFi
interfaces. We extensively evaluate SeReMAS by considering
an application where one drone offloads high-resolution images
for real-time analysis to three edge servers on the ground.
Experimental results show that SeReMAS improves the task
execution probability by 17% with respect to existing reactive-
based approaches. To allow full reproducibility of results, we
share the dataset and code with the research community.

I. INTRODUCTION

Mobile Autonomous Systems (MASs) such as self-driving
cars and drones are disrupting the wireless, embedded and
computing manufacturing industries, with unprecedented reper-
cussions on agriculture, film making, surveillance and urban
mobility, among others. According to a study by PwC, the
current global market value for drones is estimated to be over
$127 billion [1], while it is expected that North America’s
self-driving car market will expand at a CAGR of 50.8%
with a global revenue of $49.79 billions by 2024 [2]. Thus,
it is no wonder that Mobile Autonomous Systems (MASs)
have captured the interest of academia and industry, now
rushing to research and develop MASs-related devices and
technologies across many different facets [3]. Characterized
by the abundance of rich sensors (e.g., cameras, radars, and

GPS), coupled with fifth generation (5G) wireless networking
and advanced mobility, MASs are unique devices that can
travel between destinations with little to no human control.
To achieve this complex endeavor, MASs necessarily require
the continuous, real-time execution of streams of computation-
expensive tasks. For example, self-driving cars have to contin-
uously build detailed 3D maps of the surrounding areas, and
use them to categorize different navigation features such as
blockages, intersections, driveways, or fire hydrants. Moreover,
autonomous drones are always at risk of sudden and significant
drift due to adverse weather conditions, loss of power and/or
GPS connectivity. Therefore, the seamless fusion of multimedia
sensor data for real-time path planning is quintessential for the
drone’s survival.

Motivation and Problem Setting. Offloading the stream
of tasks generated by the MASs to edge servers can extend
battery lifetime and reduce task round-trip time delay [4].
However, strong assumptions such as perennial stability of
high-capacity communication links do not apply in the highly-
dynamic context of MASs, where wireless links are bound to
exhibit erratic behavior even in very simple scenarios. This
key problem is further exacerbated in larger MASs and urban
deployments, where parameters such as server and network
load may induce more system instability.
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Fig. 1: Example of task level delay from a flying drone to 3
edge servers, transmitted over WiFi 802.11n in a 50s interval.

In this paper, we tackle the challenging problem of providing
task-level performance guarantees to a stream of computing
tasks generated by an airborne MAS. Specifically, we impose a
bound on the maximum time between data acquisition and the
completion of the corresponding analysis task. We remark how
a task-level perspective is necessary in this class of systems,
where temporally local degradation of task delay can severely
harm control loops in MASs. Figure 1 shows the temporal978-1-6654-4108-7/21/$31.00 ©2021 IEEE



pattern of the end-to-end application delay (the different curves
are different edge servers) obtained through our experimental
drone testbed described in Section V-A. We can observe that
the delay exhibits significantly time-varying patterns, with a
standard deviation 0.14 and a peak-to-peak difference reaching
0.43, which is 241% of the average value of 0.178s. We
note that the experimental setting is in Line Of Sight (LOS),
and that more convoluted propagation environments would
just aggravate this problem. A bound on the average delay
would not guarantee that the task-level delay will be below
a certain threshold for each of the tasks belonging to the
task stream, which is key to guarantee correct functionality of
stream-oriented edge-based MASs.

Our vision is simple: the seamless usage of edge resources
by MASs necessarily requires techniques able to mitigate the
impairments and erratic temporal patterns induced by the
surrounding communication and computing ecosystems and
the physics of the system itself. Existing work – discussed in
detail in Section VI – has tackled the issue of MASs reliability
in a piecemeal and often highly abstract fashion, by focusing
on static optimization of either mobile device’s trajectory [5–8]
or communication resources [9–11]. In Sec. V-A, we show that
edge selection methodologies based on channel quality would
fail, and we conclude that new task offloading strategies are
needed to stabilize task completion delay in MASs.

To address this challenging problem, we developed SeRe-
MAS – Self-Resilient Mobile Autonomous Systems – a
framework whose core is a dynamic task replication mechanism,
where individual tasks are replicated and sent over multiple
channel/edge server resources. The key intuition is that the
task delay experienced by the MAS will be the minimum delay
of each replica. Thus, the larger the number of channel/edge
couples, the greater the probability that one task will satisfy
the delay requirement, which however also implies increased
resource usage. The objective of SeReMAS is to minimize
resource usage under the constraint that the probability that
the task-level delay bound will be met.

Our Approach. To drive our design, we implemented a
testbed composed by an airborne MAS and multiple ground
servers (Section II). Specifically, we extracted a rich dataset
from the system (Section V-A), whose analysis demonstrates
a lack of variables strongly correlated with the delay (Section
II-A). We show that the received signal strength indicator
(RSSI), one of the key variables used to control connectivity
and offloading, has limited influence on the delay. The dataset
illustrates how in real-world MAS systems the delay pattern
is the result of a wide variety of complex cross-variable
interactions at various temporal scales. Importantly, influential
variables are outside the network layers, and include physical
variables such as orientation, acceleration and tilt.

Based on this considerations, SeReMAS embeds a predic-
tive core based on Deep Reinforcement Learning (DRL) to
determine a compact set of computing pipelines dynamically
assigned task-by-task based on the perceived state of the system.
Fig. 2 depicts the high-level schematics of SeReMAS. The key

Fig. 2: Our Architecture for Task Offloading in MASs.

intuition is that the selected set of channel/computing resources
will influence future decision making, which DRL is able to
capture. Some of the features – e.g., application and most
network-related features – become available only if a resource
is used. For instance, if a channel/edge server pipeline is not
selected for a task, then the corresponding delay is not observed,
which motivates the adoption of a DRL-based approach. By
including future rewards in action selection and taking as
input unprocessed features such as RSSI, end-to-end delay,
inertial measurement unit (IMU) and global positioning system
(GPS) coordinates, the DRL algorithm will implicitly embed the
impact of current computing pipelines selection on the efficacy
of future decisions, as well as real-world phenomena that can
be hardly modeled through explicit mathematical terms.

Novel Contributions

‚ We design SeReMAS, a framework for the dynamic
control of task offloading in MASs with extreme temporal
variations (Section III). SeReMAS is based on a preliminary
experimental analysis (Section II-A), which indicates that there
is no dominant feature, including obvious features such as
channel quality, and that prediction necessitates an ensemble
of weaker features. We first mathematically formulate (Section
III-B) a Redundant Task Offloading Problem (RTOP). Then,
we create predictors that can help managing the resource
usage/performance trade-off. Specifically, we propose a myopic
predictor as baseline (Section III-C) and a DRL-based approach,
which operates on a set of features from application, network
and device-level components (Section III-D). To the best of
our knowledge, SeReMAS is the first framework addressing the
problem of redundant task offloading in MAS with a data-driven
approach which efficacy is verified in a real-world testbed and
with replicable dataset-based experiments.

‚ We prototype SeReMAS on a drone-based experimental
testbed (Section IV). The platform embeds a module for the
real-time analysis of features, including the flight controller,
tied to internal data routing control. As part of our prototype,
we design a strategy to make the state representation compact
(Section IV-B), and thus lower the complexity of the DRL agent,
using an iterative feature selection procedure. We consider
a real-time image analysis application through state-of-the-
art edge-assisted object detection algorithms where a drone
periodically acquires from onboard sensors data whose analysis



is offloaded to edge servers on the ground (Section V-A). We
let the drone perform task offloading through multiple WiFi
interfaces, and collect a total of 140 minutes of flying. The
dataset and the code produced as part of this paper can be
found at [12].

‚ Through experiments, we show how different subsets
of features appear dominant at different time-scales (Section
V-B). We also show in Section V-C how the DRL approach
improves by 17% the task execution probability with respect to
a reactive approach [13], thanks to the ability to manage state
uncertainty in the action selection problem, measured in terms
of probability of meeting a delay requirement per amount of
resource used, with respect to a myopic controller based on a
one-shot selection of the next set of edge servers to be used.

II. PRELIMINARY EXPERIMENTS

In our setting, a MAS is connected to N edge servers
es1, es2, . . . , esN through separate wireless channels. The
device generates a sequence of tasks t1, t2, t3, . . . with fixed
inter-arrival time equal to T seconds. A task is described as a
chunk of data to be processed with a predetermined analysis
algorithm to produce an output. We assume that tasks are
homogeneous, meaning that the amount of data associated
with any task and the analysis algorithm are fixed. Let us
define δnptiq as the capture-to-output delay of task ti executed
as edge server esn, defined as the time from the generation of
the task to the availability of its output at the edge server. The
delay δnptiq is the composition of two delays: the transmission
delay δcomm

n ptiq and the computing delay δcomp
n ptiq. In real-

world settings, both components are highly stochastic, and
depend on a number of latent variable, parameters as well as
states of protocols at various layers of the stack.

A. Preliminary Analysis

We motivate our study by analyzing the data obtained from
real-world experiments. We consider an experimental setting,
described in significant detail in Section V-A, where a drone is
offloading image processing tasks to three edge servers. Fig. 1
shows a section of the temporal pattern of the task-level delay
δt at the three edge servers. We observe that the delay signals
alternate low-delay (150 ´ 175ms) sections with spikes and
higher delay sections. While some mild correlation between
the delay signals is present, the minimum of the three signals
provides the needed stability to the delay. Fig. 3.a shows the
Cumulative Density Function (CDF) of the task-level delay δt
for the three edge servers in our experiments. Note that in our
scenario the task execution delay δcomp is nearly deterministic.
We remark that all the edge servers are within coverage, and
that all the links are in Line of Sight (LoS). Most delays are
in the range 120ms to 250ms, with about 40% of the delays
below 135-145ms.

Fig. 3.b shows the distribution of the minimum delay δmin

with respect to the cdf of the average delay and the delay
associated with the edge server with the maximum channel
quality index (RSSI). We observe that there is a noticeable
difference between the minimum delay and the delay offered by
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Fig. 3: Cumulative density function of delay (a) for each edge
server and (b) selecting the minimum delay, or the one with
maximum RSSI, or the average of the available delays.

the edge server with the best channel quality. Therefore, even
a perfect SNR-based handover would fail to provide optimal
performance in this context. This effect is the result of the
convoluted interdependencies between protocol variables at the
various layers and the physical and hardware properties of the
system at multiple time scales.

We remark this important aspect by plotting in Fig. 4 the
(delay, RSSI) and (delay, distance) mean and one standard
deviation of the delay as a function of the two other variables.
We can see the lack of a strong correlation between the
delay and both RSSI and distance and emphasize again how
experimental results emphasize effects and interactions that are
rarely captured in simulations and models.
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Fig. 4: Distribution of task level delay as a function of distance
from each of the edges and the RSSI.

III. THE SEREMAS FRAMEWORK

The results illustrated in the previous section emphasize
the need for new techniques boosting the reliability of edge
offloading for extreme real-time applications. In this section,
we present SeReMAS, a data-driven framework addressing
the reliability of task offloading in MAS. We first present
an overview of the main system blocks and functionalities in
Section III-A. Then, we formalize the learning-based redundant
task offloading control problem in Section III-B.

A. SeReMAS: A Walkthrough

SeReMAS [12] enables the data-driven control of task
offloading from the MAS to the edge servers. The architecture
of SeReMAS is shown in Fig. 5, where we emphasize the
modules performing mobility control of the MAS (yellow)
and control of task offloading (blue), and the modules –
multiplexing and filter – handling the communication between
the section of the platform at the MAS to the section at the
various edge servers.
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Fig. 5: SeReMAS system architecture: two different control
cycles intersect at the communication modules, where the DRL
agent’s policy is applied by means of task replication.

We now provide a walk-through of the main operations
performed by SeReMAS, following the steps indicated in
Fig. 5. First, the framework takes computing features (e.g.,
CPU, GPU, and RAM utilization), mobility features (e.g.,
accelerometer, gyroscope, GPS coordinates, etc), and network
features (e.g., TCP state, RSSI) and applies pre-processing
(step 1) to construct the input to a DRL model (see Section
III-B for details). The extracted features and the composition
of the state space are described in Section IV-B. Then, the DRL
state is given as input to the DRL algorithm, which outputs φ,
the set of edge servers to be used as task executors (step 2).

Tasks are generated (step 3) according to the current MAS
needs (e.g., multimedia classification), and handled by module
called multiplexer (step 4) which handles task replication
across multiple edge servers. Specifically, the multiplexer is
responsible for replicating and forwarding the tasks to the edge
servers, and is directly controlled by the output φ of the DRL
algorithm. The tasks are sent to the edges specified by φ, which
are then executed (step 5). The knowledge produced by the
task execution can be used to drive control decisions on the
MAS. For example, in our prototype we use the task result to
control the mobility of the MAS, as explained in Section IV.
The related control messages generated by the edge server(s)
are sent back to the MAS, and processed by the filter module
(step 6), which eliminates replicated messages when more than
one edge server is selected to avoid the re-execution of flight
commands. Finally, the control messages are fed to the control
actuator (step 7), which takes care of implementing the control
action, if needed (e.g., flight control).

B. Redundant Task Offloading Problem (RTOP)

As part of the SeReMAS framework, we investigate the
problem of redundant task offloading to replicate tasks and
send them over multiple channel-edge server pipelines for
increased reliability, which we call RTOP. This problem will
drive our DRL design. We define the capture-to-output delay
as the minimum of the delays associated with the task replicas:

δtipφiq “ mintδnptiq : nPφiu, (1)

where φiĎt1, . . . , Nu is the subset of edge servers to which
a replica of task ti is sent. Then, we define a controller
whose objective is to determine the sequence of edge servers
φ˚“rφ˚t1 , φ

˚
t2 , . . .s solving the following optimization problem:

arg min
φ

Ei r|φi|s (2)

s.t. Ei rI pδminptiq ą δ˚q |φis ă ∆, (3)

where I p¨q is the indicator function and expectation is computed
over the task sequence. This formulation is different than impos-
ing a constraint on the average delay, i.e., Ei rδminptiq|φis ă δ˚.
The latter formulation would allow a possibly large number of
delays above δ˚, while our formulation is equivalent to

arg min
φ

E r|φt|s (4)

s.t. P pδminptq ą δ˚|φtq ă ∆. (5)

Thus, we impose a constraint on the probability that the task
completion time is above a threshold δ˚ while striving to
minimize resource usage.

Intuitively, the larger the number of edge servers selected,
the larger the probability that the minimum of the delays
is below the threshold. However, the inevitable limitations
on channel access and maximum edge server load leads
to a task-level selection problem, where the number and
members of the chosen set is informed by the uncertainty
regarding future delays and their expected values. In real-
world settings, the resolution of the RTOP defined above
necessitates the consideration of complex inter-variable and
temporal interdependencies. For this reason, we resort to data-
driven solutions methodologies decomposing the problem into
sequences of local problems.

C. Myopic-based Baseline for RTOP

First, we formulate a myopic predictive solution to address
the RTOP. We introduce the notion of state of the system
si “ tsi,nun“1,...,N , where si,n is the feature matrix

si,n “

»

—

—

—

–

ψ1,i´L`1,n . . . ψ1,i´1,n ψ1,i,n

ψ2,i´L`1,n . . . ψ2,i´1,n ψ2,i,n

...
... . . .

...
ψF,i´L`1,n ... ψF,i´1,n ψF,i,n

fi

ffi

ffi

ffi

fl

, (6)

of FˆL features, and ψf,j,n is f´th feature referring to task j
and computing pipeline n. We describe the specific features and
dataset in the Section IV-B. We train a probabilistic predictor
as the function pi`1,n “ σpsi,nq, where

pi`1,n “ P pδnpti`1q ą δ˚q . (7)

We find the set φi`1 with minimum cardinality such that

P
`

δti`1
pφi`1q ą δ˚

˘

ă ∆, (8)

where the left-hand term is computed as

1´
ź

nPφi`1

p1´pi`1,nq. (9)



When more than one set with the same cardinality satisfies the
constraint, then the one with the smaller probability is chosen.
We note that stronger predictors σp¨q may lead to a reduced
resource usage, as they would lead to reduced uncertainty in the
class of the next delay (above and below threshold), and thus
would allow the controller to bet on fewer remote computing
pipelines. For example, let us assume that at least one of the
pipelines has a next delay below threshold: an accurate and
confident predictor returning probability 1 would allow the
selection of only one edge server.

We extend the predictor to larger temporal windows to
evaluate the predictive power of features blocks. We define

pW,yi`1,n “ σpsi,nq (10)

where

pW,yi`1,n “ P

˜

W´1
ÿ

`“0

I pδnpti``q ą δ˚qěy

¸

, (11)

that is pW,yi`1,n is the probability that at least y tasks will be
completed with delay larger than δ˚ in a window of W future
tasks. We build a binary classifier from σp¨q by setting

pW,yi`1,n

C1

ż
C0

1

2
(12)

D. Deep Q-Learning Approach for RTOP

The formulation above produces suboptimal control se-
quences. Thus, we adopt a Deep Q-Learning formulation to
resolve the optimization problem. This formulation implicitly
accounts for the impact of current decisions on the distribution
of future states (and thus on the accuracy of control). In this
case, the predictive function is defined to return the Q-values
based on the state, that is,

Qpsi`1, φi`1q “ σDRLpsiq, (13)

where

Qpsi, φiq “ Esi`1|si,φi

“

Eri`1|si`1,φi,si rri`1|si`1, φi, si|s
‰

` γmax
φ1

Esi`1|si,φi

“

Qpsi`1, φ
1q
‰

. (14)

The cost variable ci includes weighted penalties for the delay
being above threshold and the cardinality of the selected set,
that is

ci “ λ cdelayi ` p1´λq cseti , (15)

with

cdelayi “I pδminptiq ą δ˚qS pαdelayδmin ´ κ
delayq (16)

and
cseti “ αset|φi| ´ κ

set, (17)

where αdelay, αset, κdelay and κset are normalization and offset
parameters. S pxq“1{p1` e´xq is the sigmoid function, here
used to generate a smooth delay cost function which is 0 until
δ˚ and then progressively penalizing higher delay without
overpenalizing tasks with poor channel conditions. Figure 6
shows the training procedure for our DRL-based approach.
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Fig. 6: Training architecture using Double Deep Q-Learning.

We remark that the recursive formulation of the Q-values
embeds the distribution of future states and costs given the
current policy. The Q-values guide the selection of the actions
according to the rule:

φi`1 “

#

argminφi
Qpsi, φiq with prob. 1´ εt

UpPpφqzHq with prob. εt
(18)

where the best action (that is, subset of servers) is selected as
the one maximizing the future reward with probability 1´ ε,
and selected uniformly at random with probability ε. This is
commonly known as a ε-greedy strategy, it is often used in
practical problems to balance exploration/exploitation in DRL
problems.

IV. SEREMAS PROTOTYPE

We first describe the platform experimental components in
Section IV-A, and then describe our feature selection process
in Section IV-B. Finally, we explain how we implemented the
SeReMAS predictors for the RTOP, both myopic and DRL, in
Section IV-C.

FLIGHT CONTROLLERFlight 
Controller 
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Computer

Network Interfaces GPS module

Camera
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Fig. 7: (a) Drone prototype; (b) NVidia Jetson Xavier acting
as edge server.

A. Platform Components

Figure 7 shows our experimental setup. Specifically, we use
a Tarot650 quadcopter mounting a PixHawk flight controller.



We connect Telem2 port on the PixHawk to a serial interface
on a NVidia Jetson Nano board with 4GB of RAM. We use
three NVidia Jetson Xavier development boards, operating in
performance mode with 8 core ARM 64-bit processor, 32GB
of main memory, 512-core Volta GPU. We use three IEEE
802.11n WiFi cards to interconnect the drone to the edge
servers. These boards act as access points on different channels
in the 2.4GHz WiFi spectrum.

B. DRL State Space and Feature Selection

We discuss how we create the input state for the DRL
algorithm. We consider features at the application, network
stack and device level as follows:
‚ Application and Onboard Computer: We track relevant

application variables such as past capture-to-control delays,
number of samples in the intermediate buffers, and
selected actions. These will include real-time statistics
relative to power consumption and resource allocation of
CPU, GPU, and RAM.

‚ Telemetry and Position: We use MAVLink [14] protocol
messages to register a listener to the flight controller.
The onboard computer receives monitoring statistics from
the Inertial Measurement Unit (IMU), Global Positioning
System (GPS) and the power consumption of the vehicle.
We include the edge servers’ position, by including the
distance from the drone using polar coordinates (Dis-
tance, Azimuth, Elevation) centered in the reference edge
server. Distance is computed using the Harvesine formula.
Moreover, we add the relative heading by computing
the orientation of the drone with respect to the position
of the edge server. Furthermore, we consider the L2-
norm of multi-dimensional vectors (such as accelerometer
and gyroscope data) and compute speed with respect to
absolute reference frame and edge servers. All the features
are synchronized at 5Hz.

‚ Network: We select relevant parameters such as TCP
window and retransmissions, RSSI, and modulation/coding
scheme (MCS) of the IEEE 802.11n protocol. We do
so separately for each network interface available, so to
isolate features relative to each edge server.

The details of the features are available in [12].

Feature Selection. We use feature importance methods such
as Logistic Regression, Support Vector Machines and Random
Forest as implemented in [15] and selected Logistic Regression
with L1 regularizer due to the bias that Random Trees have
towards features with high support’s cardinality and the hybrid
nature of the features, which include continuous and categorical
variables. We then used a recursive algorithm, where at each
iteration we train a predictor and discard the least influential
features. We reduce the initial pool of 360 features to 73,
maximizing accuracy on the validation set. Table I shows the
normalized feature relevance predicting the number of high-
delay tasks in a 1 s window.

Interestingly, while all available past delays are selected
in the prediction (with L “ 3 in Eq. 6), acceleration and

Feature Normalized Correlation
Round Trip Time average 1
Transmission timeout -0.83
Packets Received -0.80
Channel Level -0.48
Inclination (magnitude) -0.17
Position w.r.t Edge 0.16
Altitude 0.16
Last Sent -0.15
Heading 0.13
Speed 0.08
Congestion Window 0.08

TABLE I: Normalized feature relevance to a linear model
predicting the number of high-delay tasks in a 1 s window.

inclination features are selected with a lag of 0.6s indicating
a longer range dependency with the delay. Other relevant
features include gyroscope and the increment of TCP fast
retransmissions, failures, RSSI, and retries. The complete trend
within the window is selected for these features. The selection
shows how both vehicle and network parameters are relevant
to characterize the state of the system and its future behavior,
but their influence is expressed at different time scales.

C. Myopic Predictor and DRL Implementation

We provide the details of the myopic and DRL controllers.
Myopic Predictor - To implement the predictor pW,yi`1,n “

σpsi,nq we train a series of dense DNNs (with two hidden layers
at r150, 50s nodes) using the Adam optimizer and trained for
100 epochs, with softmax output), which returns the probability
that the next delay will belong to the predicted class.
Deep Q-Learning Agent - Naive implementations of Deep
Q-Learning use one DNN function. However as demonstrated
in [16], this approach may cause instability during training if the
Q-values presents sudden changes. Due to the erratic behavior
of the system, we consider, we then take a Double Deep Q-
Learning (DDQL) approach to build our DRL agent. In DDQL,
two separate Deep Neural Networks (DNN) are used. Referring
to Eq. (14), one network approximates is trained to approximate
Qp¨q “ Qpsi, φiq, and the other one to approximate the future
Q-value term in the expectation, that is Q̂p¨q “ Qpsi`1, φ

1q

Fig. 6 illustrates the DDQN architecture and the training
procedure. We use a fully connected DNN, with [200, 100, 50]
hidden nodes, ReLu activation, Huber Loss. During training,
we apply backpropagation to Qp¨q over the epochs e “ 1, ..., N .
We periodically copy DNN’s parameters so that Q̂ Ð Q, as
a means to reduce noise in during training. Note that we still
choose the best action to learn on φ using the most updated
Qp¨q, and in fact the decoupling between action selection and
q-value function evaluation further stabilizes learning. We use
a replay buffer during training, where the experience in the
form of psi, φi, ri, si`1q are stored and sampled randomly to
avoid forgetting, which may occur if only the most recent
experiences are used [17].

V. EXPERIMENTAL RESULTS

We first present the experimental setting in Section V-A,
then the prediction performance in Section V-B, and the task
offloading results in Section V-C.



A. Experimental setting

We consider a testbed illustrated in Fig. 8, which is composed
of an airborne drone and N“3 ground edge servers in LOS.
We consider an object tracking application where the MAS
uses a camera to follow a predefined object at a certain distance.
Specifically, the MAS captures images that are analyzed to
extract the bounding box of the closest object of a certain class
(e.g., a person).

Fig. 8: Schematic representation of the system setting: three
ground edge servers, connected to the drone. Not all connec-
tions are continuously actively used (unused is dashed).

The controller then steers the vehicle in the appropriate
direction to (i) center the bounding box in the field of vision and
(ii) obtain a bounding box of a predefined size by controlling
the distance with respect to the object. In our testbed, the
drone generates a regular stream of images to be analyzed
using object detection. Specifically, the drone emits 15 images
of size 19.5 kB per second. SSD-MobileNet-v2 model is used
to analyze the images. In our measurements, the NVidia Jetson
Xavier board takes 10 ms to execute the algorithm. Note that
the onboard NVIDIA Jetson Nano takes 87 ms to complete
the model, however, power expenditure shifts from 1.6 W to
4.2 W when the GPU is processing the images, that is, 11%
of the power needed to fly.

To acquire a dataset for a wide-spectrum of flight parameters,
we set the drone on a semi-random flight pattern around the
edge server. The pattern is defined by assigning uniformly
distributed GPS way-points to the drone in a cylinder of radius
equal to 30m centered on the edge server constellation and
confining the altitude in the r5, 15sm range. The maximum
speed is randomly chosen for every new GPS waypoint between
r1, 4sm{s. A new waypoint is set as soon as the drone reaches
3 meters from the current one, to obtain a smooth flight as
similar as possible to a real application. In drone applications,
the outcome of the object detection analysis is promptly needed
to take control action and adjust the trajectory. While the action
taken after the image analysis is beyond the scope of the current
manuscript, we mention target tracking [18], object avoidance
[19] as possible applications.

B. Prediction Performance

All results are based on an experimental dataset [12]
collected using the randomized flight patterns described in
Section V-A. We first evaluate the prediction performance of

the myopic predictors pW,yi`1,n “ σpsiq and associated binary
classifier. In other words, the predictor determines whether at
least half of the delay in the future window is below a given
threshold, which we set to δ˚“175ms. We use the Area Under
the Curve (AUC), integral of the ROC with respect to false
positives, as performance metric, commonly used to evaluate
algorithms predicting an imbalanced target.
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Fig. 9: Performance of future delay classification for different
sets of features. Length of the prediction window is expressed
in seconds.

Fig. 9 shows the performance of the predictor trained on
different feature blocks as a function of the window W
(where we set y “W {2). The results highlight how semantic
differences across subsets of features influence their predictive
power in the short and long term. When the prediction window
is small, most of the predictive power lies in networking
features, which capture short-term correlations between high
delay events. However, network variables struggle to capture
longer-term trends, which are, instead predicted by telemetry
variables. Indeed, the latter directly influence the distribution
of fine-grain network events.
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Fig. 10: Performance in future delay classification in presence
of partial information for recent time slots. Length of the
prediction window is expressed in seconds.

As noticed earlier, part of the network information is
available only when offloading to a particular edge server.
We now analyze how prediction performance is affected when
several recent samples lack such information for one server.
Fig. 10 shows how the lack of full state information (which is
available only if the edge server is used) in recent samples (last
one, last two, etc.) affects the ability of the myopic classifier
to accurately predict future pipeline performance as a function
of the prediction window W expressed in seconds. Missing



information in one or few recent input samples, has a noticeable
effect on classification in the short term, as the AUC reduces by
5% for one sample and 10% for just two samples. On the other
hand, as expected, the influence of recent samples fades out
when predicting further points in the future. As the decisions of
the DRL agent embed the future performance beyond the next
delay sample, they also consider the availability of information
in future decision instances.

C. Redundant Offloading

Fig. 11 shows the performance of the myopic and DRL
selectors in terms of delay (percentage below threshold) and
resource usage (average number of edge servers used). The
different points for the myopic approach are obtained by
varying the parameter ∆, i.e., the bound on the probability that
the delay is below threshold.
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Fig. 11: Delay performance and resource utilization trend of
the myopic and DRL-based selector.

The DRL approach, as described in Section III-B, generates
different points in the plot for different values of the weight λ
in the cost function, where a larger λ favors low delay over
resource usage. For comparison, we include a selector which
uses all the available edge servers for all the tasks, and a selector
which uses the edge server with the best channel quality index.
When using all the three edge servers all the time, the myopic
selector achieves maximum performance („ 97%), whereas
when using only one edge server, it achieves „ 85.5%. We note
that a selector that chooses the edge server with the best channel
quality achieves 75% of tasks with delays below threshold,
w.r.t. which we improve 17%. Thus, predictive control greatly
improves performance compared to traditional options, even
when idealized to task-level granularity without connection
delay. As we make the bound on ∆ more tight, the myopic
approach uses more and more resources.

We observe that using two edge servers, the myopic
controller already achieves a performance roughly 2% worse
than the three edge server option, demonstrating that prediction
can reduce resource usage. However, when using a small
amount of resources, the myopic controller’s effectiveness
sharply decreases. Conversely, the DRL is capable of effectively
select small sets of computing pipelines while preserving
delay performance. Using 1.1 edge servers on average, the
DRL approach achieves „ 92%, that is, 7% more than the

myopic approach. We explain this trend by observing that the
DRL agent optimizes the information available to make future
decisions, thus maximizing the overall prediction accuracy
when resources are scarce and selection needs to be precise.

To further illustrate the behavior of the proposed approach,
we show in Figure 12 a time series of delays and decisions
(selected edge servers) of the DRL-based approach for two
different λ (0.1 and 0.2) used in Eq. 15. We can see that the
DRL agent can stabilize delay, where a larger use of resources
leads to the avoidance of more delay peaks. We note how
the DRL agent rotates the edge servers periodically to harvest
information for more informed future decisions.
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Fig. 12: DRL agent improving delay by using task replication.
We plot in grey the traces of the non-selected delays.

VI. RELATED WORK

Edge computing can significantly improve reliability and
performance in mobile applications [4]. Different frameworks
perform a multi-layer optimization to exploit the full potential
of edge computing [5, 20]. To fully exploit the edge servers,
the user equipment needs to periodically make a decision on
whether to process tasks locally, or to offload. In the latter case,
there might be multiple technologies or networks available,
e.g. [21], and a link must be chosen for each transmission.
Convex optimization has been proven to be ineffective due to
the presence of complex factors such as user’s mobility [3].
Classic approaches are shown to perform better with coarser
granularity settings and when considerable prior knowledge
is available. For example, in [22] the authors develop an
online multi-decision making scheme, solving a task offloading
problem while jointly optimizing caching, communication and
computation resources in the Internet of Vehicles, exploiting
the proximity of users to roadside units.



Fast-changing mobile networks usually employ data-driven
approaches, using Markov Decision Processes (MDP), Q-
Learning or DRL. MDPs have shown a great compromise
between the flexibility of learning, and the data efficiency
of a model-based solution [23, 24]. However, MDP-based
solutions present state space that is too large, and require
vast amounts of data to find the correct transitions for each
state-action pair during training. Finally, they are very memory
intensive both in training and running time. For these reasons,
DRL approaches have been proposed. Cao et. al [3] present
a general framework for intelligent offloading in multi-access
edge computing composed by observation tier, analysis tier,
prediction tier and policy tier. In this paper, we consider a
much more complicated problem where the trade-off is beyond
power efficiency and link performance. Recently, researchers
have worked towards simulation environments for drones, for
example, OpenUAV [25] and FlyNetSim [26]. However, neither
of the two environments can capture the interactions between
mobility and application delay that are key in this paper. Thus,
we are sharing our dataset with the community to further allow
research that can explain and exploit these interactions.

VII. CONCLUSIONS

This paper has proposed SeReMAS, a data-driven optimiza-
tion framework for predictive task offloading in edge-assisted
Mobile Autonomous Systems (MASs). We have formulated
a Redundant Task Offloading Problem (RTOP) and created a
predictor based on Deep Reinforcement Learning (DRL), which
produces the optimum task assignment based on application-,
network- and telemetry-based features. We have prototyped
SeReMAS on a real-world testbed, and extensively evaluated
SeReMAS by considering an application where one drone
offloads high-resolution images for real-time analysis to three
edge servers on the ground. Experimental results show that
SeReMAS improves the task execution probability by 17%
with respect to existing reactive-based approaches.
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